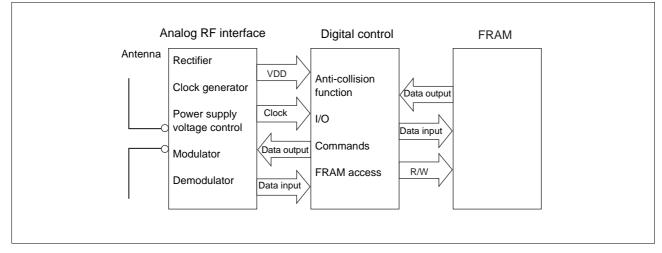
ASSP

ISO/IEC 18000-6 Type-C Compliant FRAM Embedded UHF Band RFID LSI *FerVID family*[™]

MB97R8050

This specification defines physical and logical requirements for the passive RFID Tag LSI "MB97R8050" based on international standard "EPCglobal Class 1 Generation 2 (Ver.1.2.0).


In this document, the term "interrogator" used in the EPCglobal standard is changed to R/W (reader/writer) in accordance with customary practice. The term "Tag" is used as it is.

■ FEATURE

- Compliant with EPCglobal Class 1 Generation 2 (C1G2) Ver.1.2.0
 - Compliant with all UHF bands all over the world (carrier frequency: 860 MHz to 960 MHz)
 - High-speed data transmission (compliant with EPCglobal C1G2) R/W \rightarrow Tag: 26.7 kbps to 128 kbps (when the counts of data 0 and 1are equal) Tag \rightarrow R/W: 40 kbps to 640 kbps
 - DSB-ASK, SSB-ASK, PR-ASK modulation (compliant with EPCglobal C1G2)
 - Anti-collision function
 - Frequency hopping
- FRAM : High speed read/write Non-volatile memory
 - Read/Write endurance: 1010 times
 - Memory data retention: 10years (+55 °C)

BLOCK DIAGRAM

■ RF INTERFACE

RF signal interface is compliant with EPCglobal C1G2 Ver.1.2.0 (as described in 6.3.1).

MEMORY

1. Memory addressing

Memory addressing uses Extensible bit vectors (EBV) format, which is compliant with EPCglobal C1G2 Ver1.2.0 (Annex A).

2. Memory Map

(1) Memory area

The memory is divided into the following four areas. There is only 48-bit FRAM in TID area.

Name	Memory size			9	BANK	Address range	Access command	
TID	11w	×	16b	=	176bit	10	00н to 0Ан	R/S
EPC	10w	×	16b	=	160bit	01	00н to 09н	R/W/S/BLW/BLE
Reserved	4w	×	16b	=	64bit	00	00н to 03н	R/W
System	1w	×	16b	=	16bit			L

• Four memory areas

Note : Command abbreviation:

R:READ, W: WRITE, S: SELECT, L: Lock, BLW: BlockWrite, BLE: BlockErase

The TID, EPC, and Reserved memory areas contain the data that is defined by the EPCglobal C1G2 specification (Chapter 6.3.2.1). The memory areas are also called as "Memory bank" or "Bank" in EPC standard.

In each memory bank, the logical address starts from zero (00H).

Logical addressing in EBV-8 format is used.

The system area stores memory lock information.

The memory map is shown in the table on next page. (The system area is not disclosed).

MB97R8050

Memory Bank Name	Memory Bank Number	Memory Bank Bit Address	Memory Bank Word Address	Data Description	Size (word)	Total (word)	Total (bit)
		A0H–AFH	0Ан	BlockWrite and BlockErase Segment [15:0]	1		
		90н–9 F н	09н	BlockWrite and BlockErase Segment [31:16]	1		
		80н–8 F н	08н	BlockWrite and BlockErase Segment [47:32]	1		
		70н–7 F н	07н	BlockWrite and BlockErase Segment [63:48]	1		
		60н–6 F н	06н	Optional Command Support Segment [15:0]	1		
TID	10	50н–5 F н	05н	Serial Number Segment [15:0]	1	11	176
		40н–4Fн	04н	Serial Number Segment [31:16]	1		
		30н–3 F н	03н	Serial Number Segment [47:32]	1		
		20н–2Fн	02н	XTID Header Segment [15:0]	1		
		10н–1 F н	01н	TAG MDID[3:0], TAG MODEL NUMBER[11:0]	1		
		00н–0 F н	00н	E2H, TAG MDID[11:4]	1		
		90н–9 F н	09н	EPC[15:0]	1		
		80н–8 F н	08н	EPC[32:16]	1		
		70н–7 F н	07н	EPC[47:32]	1		
		60н–6 F н	06н	EPC[63:48]	1		
EPC	01	50н–5 F н	05н	EPC[79:64]	1	10	160
EFC	01	40н–4Fн	04н	EPC[95:80]	1	10	100
		30н–3 F н	03н	EPC[111:96]	1		
		20н–2Fн	02н	EPC[127:112]	1		
		10н–1Fн	01н	StoredPC[15:0]	1		
		00н–0 F н	00н	StoredCRC16[15:0]	1		
		30н–3 F н	03н	ACCESS-Password[15:0]	1		
RESERVED	00	20н–2Fн	02н	ACCESS-Password[31:16]	1	4	64
NEGERVED	00	10н–1 F н	-1Fн 01н KILL-Password[15:0]		1	4	04
			00н	KILL-Password[31:16]	1		

(2) TID

This LSI contains 176-bit XTID format data in compliance with EPC Tag Data Standard 1.6 (abbreviated as TDS 1.6 in the following).

XTID consists of the following items. The 8-bit data (00 μ to 07 μ) indicates Identifier of EPC with the fixed value of "E2 μ ".

- TAG MDID (08_H to 13_H) The 12-bit data indicates IC manufacture code with fixed value of "810_H".
 TAG MODEL NUMBER (14_H to 1F_H) The unique 12-bit serial number is assigned by Fujitsu Semiconductor. The first 8-bit data of TAG MODEL NUMBER [11:4] indicates LSI code with fixed value of "07_H". The bottom 4-bit data of TAG MODEL NUMBER [3:0] indicates LSI version.
- XTID Header Segment (20H to 2FH) The 16-bit data indicates XTID's support status with fixed value of "3800H".
- Serial Number Segment (30_H to 5F_H)
 The unique 48-bit serial number is assigned by Fujitsu Semiconductor.

- Optional Command Support Segment (60H to 6FH) The 16-bit data indicates EPC's maximum size and supported Optional command with fixed value of "0СС8н".
- BlockWrite and BlockErase Segment (70H to AFH) The 64-bit data indicates the support status of BlockWrite and BlockErase with fixed value of "0002_0308_0002_0302н".

 XTID format 													
TDS 1.6	TID MEM BANK	BIT ADDRESS WITHIN WORD (In Hexadecimal)											
Reference Section	BIT ADDRESS	0 1 2 3	4 5 6	7	8	9 A	В	С	D	Е	F		
	А0н–АГн	В	ockWrite and E	Block	Erase	Segme	nt [15	5:0]					
16.2.4	90н–9 F н	Bl	ockWrite and B	lockE	rase S	Segmei	nt [31	:16]					
10.2.4	80н–8 F н	Bl	ockWrite and B	lockE	rase S	Segmei	nt [47	:32]					
	70н–7Гн	Ble	BlockWrite and BlockErase Segment [63:48]										
16.2.3	60н — 6 Г н	O	otional Comma	nd Su	upport	Segme	ent [1	5:0]					
	50н–5 F н		Serial Nun	nber S	Segme	ent [15:	0]						
16.2.2	40н–4Fн		Serial Num	nber S	Segme	nt [31:'	6]						
	30н–3 F н	Serial Number Segment [47:32]											
16.2.1	20н–2 F н	XTID Header Segment [15:0]											
16.1 and 16.2	10н–1 F н	TAG MDID[3:0]		TAG	MODE	EL NUN	1BER	[11:0]				
10.1 and 10.2	00н–0 F н	E2H TAG MDID[11:4]											

- XTID format of this LSI

TDS 1.6	TID MEM BANK			I	BIT A	DDR	ESS	WIT	'HIN '	WOR	D (Ir	n Hex	adeo	cimal)		
Reference Section	BIT ADDRESS 0 1 2 3 4 5 6 7 8 9 A									В	С	D	Е	F			
	А0н–АГн								03	02н							
16.2.4	90н–9 F н								00	02н							
10.2.4	80н–8 F н								03	08н							
	70н–7Гн								00	02н							
16.2.3	60 н– 6F н								0C	С8н							
	50н–5 F н					ç	Seria	l Nur	nber	Segr	nent	[15:0]				
16.2.2	40н—4 F н					S	Serial	Num	nber \$	Segn	nent	31:1	6]				
	30н–3 F н					S	Serial	Num	nber \$	Segn	nent	47:3	2]				
16.2.1	20н–2Fн	3800н															
16.1 and 16.2	10н–1 F н		0	н				0	7н, Т	AG N	10DE	ELN	JMBI	ER[3:	0]		
10.1 and 10.2	00н–0Fн	Е2н 81н															

(3) EPC

EPC default value consists of the following items.

- EPC Length : 96 bit
- EPC Code : The 48-bit serial number written in TID

EPC	EPC BANK			E	BIT A	DDF	RESS	WIT	HIN \	NOR	D (In	Hex	adeo	imal)			Description
Word	BIT ADDRESS	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	
9	90н — 9 F н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8	80н – 8Fн	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7	70н – 7Fн						Sei	ial N	umbe	er (TI	D [15	5:0])						EPC[15:0]
6	60н — 6 F н						Seri	al Nu	ımbe	r (TIC) [31:	:16])						EPC[31:16]
5	50н — 5Fн						Seri	al Nu	ımbe	r (TIC) [47:	:32])						EPC[47:32]
4	40н — 4 F н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EPC[63:48]
3	30н – 3Fн	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EPC[79:64]
2	20н – 2Fн	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EPC[95:80]
1	10н – 1Fн		Length UMI XI T Attribute Bits								StoredPC							
	IOH – IFH	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	StoredFC
0	00н – 0Fн		(CRC-16)						StoredCRC									

■ FLAGS AND RANDOM NUMBER GENERATOR

The inventoried flag, selected flag, and random number generator are compliant with EPCglobal C1G2 Ver. 1.2.0. (Chapter 6.3.2.2, 6.3.2.3, 6.3.2.5)

TAG STATES AND SLOT COUNTER

The Tag states and slot counter are compliant with EPCglobal C1G2 Ver. 1.2.0. (Chapter 6.3.2.4)

■ COLLISION ARBITRATION ALGORITHM

The collision arbitration algorithm is compliant with EPCglobal C1G2 Ver. 1.2.0. (Chapter 6.3.2.6, 6.3.2.7, 6.3.2.8, 6.3.2.9)

■ COMMAND

This LSI supports all mandatory commands and parts of optional commands defined by EPCglobal C1G2 Ver. 1.2.0. (Chapter 6.3.2.11). The commands list and codes are shown in the table below. For BlockWrite and BlockErase command (Optional command), parts of the specifications are different from the EPC C1G2 standard as described in "(1)BlockWrite (Optional command)" and "(2)BlockErase (Optional command)".

Command

Items	Command	Code
	QueryRep	00
	ACK	01
	Query	1000
	QueryAdjust	1001
	Select	1010
Mandatory	NAK	11000000
	Req_RN	11000001
	Read	11000010
	Write	11000011
	Kill	11000100
	Lock	11000101
	Access	11000110
Optional	BlockWrite	11000111
	BlockErase	11001000

[•] CRC-16(Differences from EPCglobal C1G2 Ver. 1.2.0)

When the R/W writes the entire or part of the PC or EPC area of the Tag, CRC-16 stored in EPC memory 00_{H} to $0F_{\text{H}}$ of the Tag is disabled until an ACK command is received and a response that is not truncated (PC, EPC, CRC-16) is returned. After the completion of responding to ACK command, the correct CRC-16 value calculated during responding is written to EPC memory (00_{H} to $0F_{\text{H}}$) as well. If a truncated response to the ACK command is requested before CRC-16 is enabled, the CRC-16 value in the EPC memory, which has not been enabled, is returned as is.

(1) BlockWrite (Optional command; partly supported)

The following table shows the format of the BlockWrite command. Parts of the function of BlockWrite command are different from the EPCglobal C1G2 Ver.1.2.0 as follows.

- MemBank : BlockWrite command can be executed in EPC bank. If BlockWrite command executed to the Reserved bank, the LSI will reply an error code.
- WordCount : If the WordCount is specified over 3 (03_H), the LSI will reply an error code. It can only be specified to 1 (01_H) and 2 (02_H).
- BlockWrite command

	Command	MemBank	WordPtr	WordCount	Data	RN	CRC-16
# of bits	16	2	EBV	8	WordCount × 16	16	16
Description	1100 0111	01: EPC	Starting Address Pointer	Number of word to write	Data to be written	Handle	

(2) BlockErase (Optional command; partly supported)

The following table shows the format of the BlockErase command. Parts function of BlockErase command are different from the EPCglobal C1G2 Ver.1.2.0 as described as follows.

- MemBank : BlockErase command can be executed in EPC bank. If BlockErase executed to the Reserved bank, the LSI will reply an error code.
- WordCount : If the WordCount is specified over 9 (09_H), this LSI will reply an error code. It can only be specified to 8 (08_H) and under except 0 (00_H).

 BlockE 	rase command	t
----------------------------	--------------	---

	Command	MemBank	WordPtr	WordCount	RN	CRC-16
# of bits	16	2	EBV	8	16	16
Description	1100 1000	01: EPC	Starting Address Pointer	Number of word to erase	Handle	

(3) Error code

The error code is compliant with EPCglobal C1G2 Ver. 1.2.0 (Annex I).

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol		Rating		Unit	Remarks
Faiametei	Symbol	Min	Тур	Max	Unit	Rellidiks
Maximum input voltage	Vmax	_	—	3.0	V	Between PWRP-PWRM
		- 2	—	+ 2	kV	Human Body Model
ESD voltage immunity*	Vesd	- 100		+ 100	V	Machine Model
		- 750		+ 750	V	Charged Device Model
Storage temperature	Тѕтс	- 40		+ 85	°C	Excluding FRAM data retention guarantee

* ESD measurement condition: The die chip has been mounted into a QFN40 package.

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

Devementer	Cumbal		Value		11:0:4	Domorko
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Operation ambient temper- ature	Та	-40		+55	°C	
Retention guarantee temperature	Trtn1	-40		+55	°C	Retention guarantee period: 10years
Antenna input frequency	Fclk	860		960	MHz	According to the Radio Law
Reception modulation depth	(A-B)/A	80	90	100	%	
Data 0 symbol duration	Tari	6.25		25	μs	
Receiving waveform rise time	Tr	1		500	μs	
Receiving waveform settling time	Ts			1500	μs	
Receiving waveform fall time	Tf	1		500	μs	

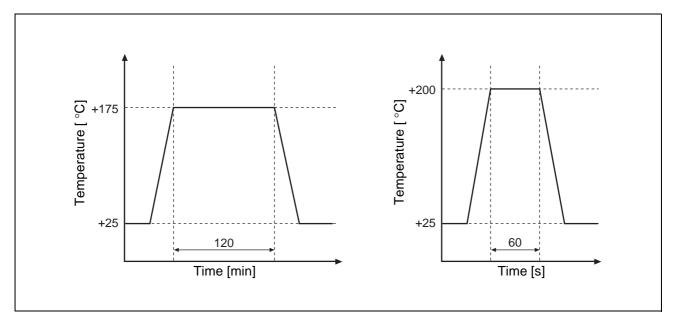
2. Recommended Operation Conditions

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

3. RF Communication Characteristics


Parameter	Symbol		Value	9	Unit	Conditionas/Remarks
Farameter	Symbol	Min	Тур	Max		Conditionas/Remarks
Minimum operating power	Рмім		-12		dBm	Measured by Query Command Tari = 25 μs, BLF = 41kbps, FM0, DSB-ASK, Modulation depth=90%, Ta = 25 °C
Maximum operating power	Рмах		_	20	dBm	
Equivalent input capacitance	СР		0.66		pF	Input power = -12 dBm, parallel model (At 920 MHz)
Equivalent input resistance	Rp		2.7		KΩ	Input power = -12 dBm, parallel model (At 920 MHz)
Receiving bit rate	F_fwd	26.7		128	kbps	PIE code: mark rate = 1/2
Returning bit rate	F_rtrn	40		640	kbps	

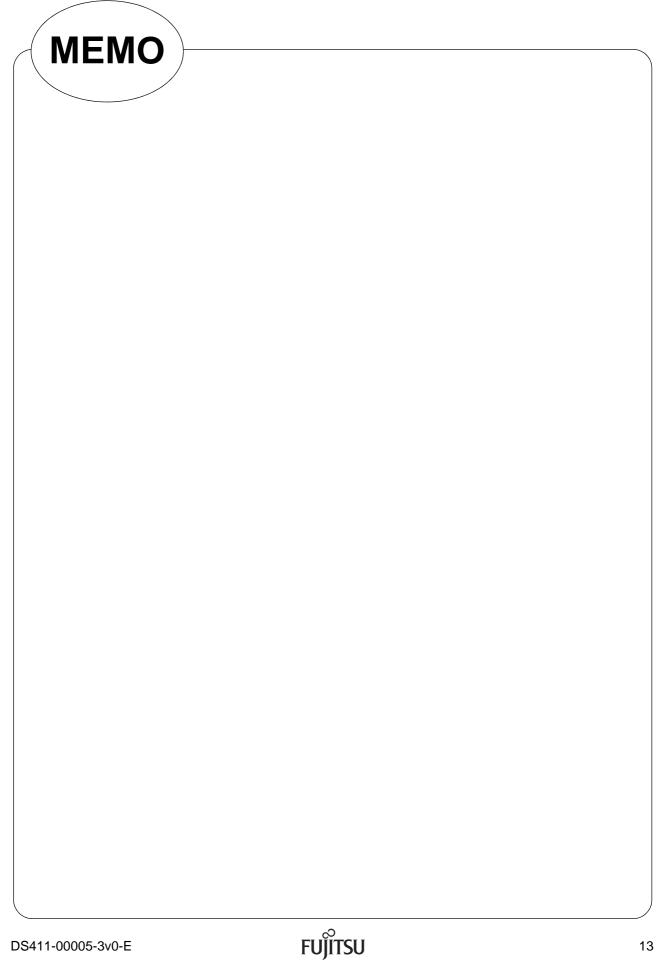
■ RECOMMENDED ASSEMBLY CONDITIONS (WAFER)

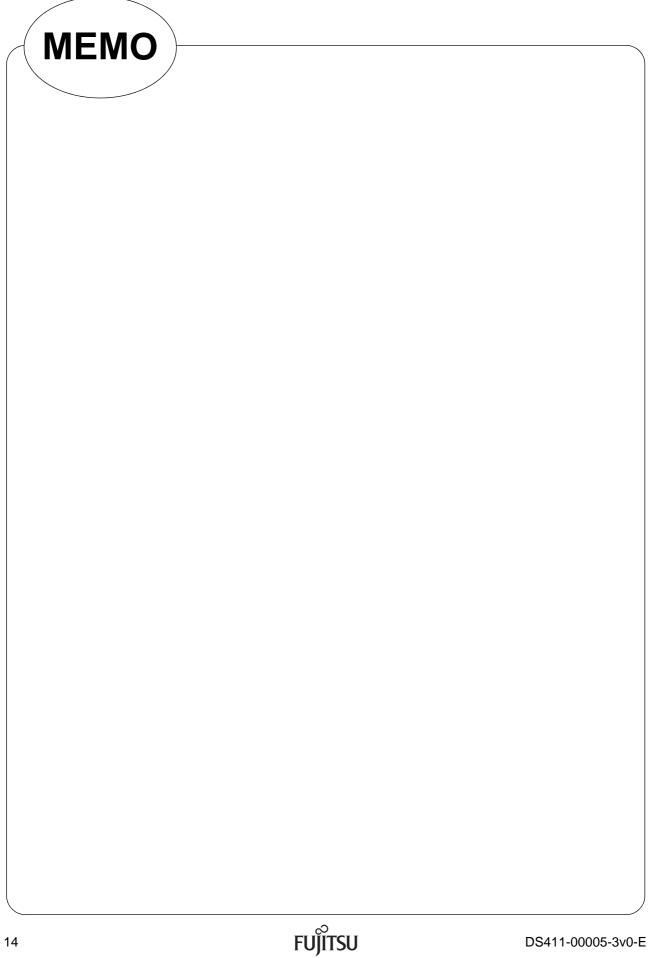
The MB97R8050 is recommended to be mounted in the following condition to maintain the data retention characteristics of the FRAM memory when the chip is mounted.

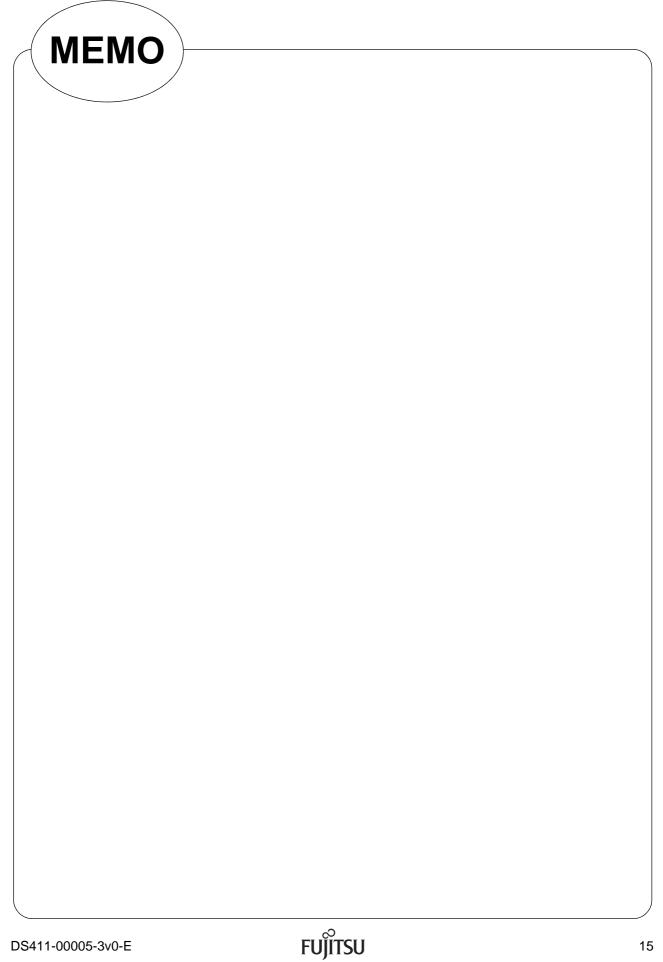
- Mounting temperature of + 175 °C or lower, and 120 minutes or shorter when applied at high temperature, or
- Mounting temperature of $\,+\,200~^\circ C$ or lower, and 60 seconds or shorter when applied at high temperature

■ ORDERING INFORMATION

Part number	Shipping method	Wafer thickness	Remarks
MB97R8050-DIAP15	Wafer (After dicing)	150 $\mu m \pm 25.4~\mu m$	




■ MAJOR CHANGES IN THIS EDITION


A change on a page is indicated by a vertical line drawn on the left side of that page.

Page	Section	Change Results	
1	- Read/Write endurance	Changed from 10 ⁸ times to 10 ¹⁰ times.	

FUJITSU SEMICONDUCTOR LIMITED

Shin-Yokohama Chuo Building, 2-100-45 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-0033, Japan http://jp.fujitsu.com/fsl/en/

All Rights Reserved.

FUJITSU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUIITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.